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0. Abstract. Hotelling's T2 and related charts are studied in moni-

toring the means of a multidimensional production process. The T2 chart

is shown to be optimal in a class of procedures in that it signals more

quickly than other procedures in the class when the process is not in con-

trol. Nonstandard properties of the distributions of run lengths of these

charts are studied when (i) certain parameters are estimated in a base

period and modified procedures are followed using these estimates, (ii)

the process is a drifting process, and (iii) the assumption of independent

Gaussian vector observations is replaced by the assumption that observa-

tions are generated from a spherical process. For these cases stochastic

bounds on the actual run-length distributions are given in terms of geo-

metric distributions, and certain monotone properties of run lengths are

established under drifting.
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1. Introduction. Various control charts are available for monitoring

the output of a production process. Shewhart's (1926) X chart is standard

for monitoring the mean level of a single quality characteristic, and

Hotelling's (1947) X2 and T2 charts are used for monitoring the means of

several characteristics. In these charts successive values of a statistic

are plotted against time, and a chart signals at level a that the process

is not in control when the statistic exceeds a control limit c . Standard

assumptions are that independent random samples of n observations each are

taken in succession from a p-dimeuzional Gaussian process having the mean

vector V and the dispersion matrix E, and i0 is the value of u when the

process is in control. For the X2 chart the statistics are

2--
2x (Yi-vz.), i = 1,2,... (1.1)

where Y i is the vector of means from the ith sample, and the control limit

is c = X2(p), the 100(1-a) percentile of the central chi-squared distri-
cs

bution having p degrees of freedom. For the T2 chart the statistics are

21 -P -1 -O) =1,..
Tii = 1,2,. (1.2)

where S is the sample dispersion matrix for use when Z is unknown and

n > p, and the control limit is c T 2(p,n-1), the 100(1-a) percentile of

Hotelling's (1931) distribution having the parameters p and n-1. These

procedures were developed further and applied by Jackson (1956,1959),

Jackson and Morris (1957), Jackson and Bradley (1961a,b), Ghare and Torg-

ersen (1968), and Jackson and Mudholkar (1979), including diagnostic pro-

cedures for assigning probable causes when a chart signals that the moni-

tored process is not in control.
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Our purpose here is to study the X and T 2charts and some modifica-

tions of these under standard and nonstandard assumptions. To be effect-

lye a chart should signal infrequently when the process is in control and

more frequently as the process shifts from control. These properties are

embodied in the distribution of the run length of a chart, i.e. the number

of successive samples taken before the chart signals that the process is

not in control. Run-length distributions are useful in comparing monitor-

ing procedures, and their moments enter naturally into cost models for

designing economic inspection policies. In Shewhart charts successive

statistics typically are independent; if in addition the process is sta-

tionary, then the distribution of run lengths is geometric with parameter

equal to the probability of exceeding the control limit on any sampling

2 2
occasion. Under standard assumptions the run lengths of the X and T

charts are geometric, assuring that these charts eventually will signal

with unit probability. Following the supporting materials of Section 2,

we develop further properties of the standard T 2charts in Section 3 in-

cluding optimal properties.

Limitations are inherent in the standard X 2and T 2charts, and these

inhibit use of the charts. Process dispersion parameters frequently are

2
unknown for use in the X charts, and the control value ui may be unknown

for use in either chart. Moreover, the T 2chart requires that n > p in

each sample to ensure the invertibility of S., whereas in practice small

but frequent samples routinely are taken. In the case of a single char-

acteristic a common practice is to estimate such parameters in a base

period of sufficient length to give reliable estimates, and to use these

estimates in lieu of the unknown parameters. In the case of several



2 2characteristics this leads to modified X and T charts as studied in Sec-

tion 4. One consequence is that run lengths of these charts are not geo-

metric owing to dependencies among the successive statistics.

Nonstandard properties of the X2 and T2 charts are examined further in

Sections 5 and 6. Section 5 deals with drifting processes; their run lengths

are not geometric because successive statistics are not distributed identi-

cally. Nonetheless, a basic monotonicity property of the run lengths is

established and used to bound the actual run-length distributions in terms

of geometric distributions. In Section 6 the Gaussian assumption is weak-

ened to the case that observations are generated from a spherical process,

and these charts are studied under the weakened assumptions.

2. Preliminaries. Let V be a finite-dimensional linear space; ex-

amples are the n-dimensional Euclidean space Rn and the space F of realnxm

(nxm) matrices. Of two random variables U and V, U is said to be stochas-

tically larger than V if, for every t, P(U> t) > P(V> t). This in turn

implies that E(U) > E(V) whenever the expected values are defined. Let

(G(t;); a e (0,1)1 be cumulative distribution functions (cdf's) of geo-

metric distributions having argument t and parameter a; then the family

{G(t;); a e (0,I)} is stochastically decreasing in a. If 4(.) and v(.)

Nare two probability measures on R , u(.) is said to be more peaked about

9 e RN than v(.) in the sense of Sherman (1955) if, for every compact con-

vex set E c symmetric about 8 under reflection, 4(E) > v(E).

A basic inequality is the following; a standard proof uses convexity

and Jensen's inequality.

LEMMA 1. Let {Xo,XI,. .. ,X} be mutually independent random elements
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with values in V0 x Vt such that {X1,X2,. .. ,Xt} are distributed indentically.

For any function 0: V0 x V R T1 and any constant c,

tP ( ,x 0'X )<c ' .. ,O(x 'x).fc] > 1 P  [O(Xipx 0) <c] .

The available quality control procedures for variables are based al-

most exclusively on Gaussian assumptions. To study the effects of depart-

ures from normality we consider distributions having the weaker property

of spherical symmetry, including such heavy-tailed distributions as the

spherical Cauchy law and other spherical stable distributions. If Y s RN

is a random element having the distribution L(Y), then L(Y) is said to be

spherically symmetric if, for any (NxN) orthogonal matrix Q, L(QY) = L(Y).

Properties of these and related distributions were considered by Kelker

(1970). Let SN ( IN ) be the class of N-dimensional spherical distributions

symmetric about e e , i.e. if L(Y) c SN (9I N), then L(Y-e) is spherical.

If M is a linear subspace of R N, a function 0: RN _ Rk is said to be loca-

tion-invariant with respect to M if, for every E e M and y e R N , 4(y+O)

4(y). An important invariance property of distributions derived from

S N(,1N ) is the following; a proof is given in Jensen and Good (1981).

LEMA 2. Let L(Y) be spherically symmetric about 6 e M, and let o: R 
N

Rk be location-invariant with respect to M and be homogeneous of degree

zero. Then the distribution L(4(Y)) on Rk is invariant for all distribu-

tions L(Y) in the class (S N(,IN ); a E '}

Let N be countable and let (U(t); t E NJ be a stochastic process with

values in Rp such that, for each k and {tl,t 2 , .... tkI e N, the joint dis-

tribution of (U(tl),...,U(tk)I considered as a distribution on Rpk is
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spherical; then {U(t); t e N} is called a spherical process. A count-

able process is spherical if and only if it is a scale mixture of spherical

Gaussian processes, i.e. if for each k and {tl,t 2,...t k 1 6, the joint

probability density function (pdf) of U = [U(t1)...,U(tk)] of order (pxk)

is given by

f(U) =2r)/ 0 r-exp(tr U'U/2r )dH(r) (2.1)

with H(.) a mixing distribution on (0,-); cf. Hartman and Wintner (1940).

Various choices for H(-) yield different spherical processes, including

the spherical Gaussian process.

In the context of T2 charts, we assume that successive vector obser-

vations are generated throughout the monitoring period from a spherical

process and thus are dependent except in the Gaussian case. In particular,

partition N into disjoint subsets {N0,Ni,... } corresponding to successive

sampling periods with NO0 a base period of length m and succeeding periods

of length n. Let (t) and Z(t) be step functions on N, constant within

samples with possible jumps between samples, such that p(t) e Rp and

Z(t) (pxp) is positive definite. Our model for generating observations

from a spherical process (U(t); t e NJ with values in Rp is

Y0 j . (tM)U(t) + U(t.); t e No$ j 1,2,...m; (2.2)

Tij = (t )U(t ) + U(tj); tj N., j - 1,2 .... n; (2.3)

where i = 1,2p... In monitoring location parameters the usual assump-

tion is that scale parameters remain stationary, i.e. that E(t) Z for

every t e N. We return to this point later.
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3. Properties of T2 Charts. In this section we study Hotelling's

(1947) T2 charts under the standard validating assumptions. Specifically,

we establish the propensity of these charts to signal when a process is not

in control, using stochastic comparisons of run lengths.

Let Y'. - [Yil'Yi 2 '.'''Yin] be the vector values observed during the

ith sampling period, and let T(Yi) be the statistic to be charted using a

procedure for monitoring the means of the sampled process. In testing

H: U = 0 against A: u 0 i0 using a single sample, it is known that the T2

test (i) is invariant under nonsingular linear transformations of the data

and thus is free of the arbitrary coordinates used to represent the obser-

vations, and (ii) depends on Yi only through Yi and Sip and its power de-

pends on the parameters only through the noncentrality parameter X

n(p-p0'-(p-0). Henceforth let r be the class of all procedures moni-

toring at level a using statistics {T(Y ),T(Y2)...} having the property

i), and let r2 be the class of procedures monitoring at level a on each

occasion and having property (ii). In the case of a single sample these

classes provide a-level tests for H: i = 0 against A: p # pop and it is

widely known that the T2 test is uniformly most powerful among tests in

the classes T and T 2 on a fixed sampling occasion (cf. Anderson (1958),

Section 5.5). The notions of level and power do not carry over to the

entire monitoring period, however, as control charts typically signal with

unit probability even when the process is in control. Nonetheless, we next

establish that the T2 chart is optimal among procedures in the classes I

and T2 in the strong sense that its run length is stochastically smallest

at a fixed alternative u # 0' The T2 chart thus tends to signal more

quickly than other procedures in these classes when the process is not in



7

control.

THEOREM 1. In monitoring the means of a p-dimensional Gaussian process,

suppose the process is stationary with means vi # 0 and dispersion matrix

E. Of all invariant procedures monitoring at level a in the class T i, and

of all a-level monitoring procedures in the class r2, the run length of the

T2 chart is stochastically smallest.

Proof. By stationarity, the mutual independence of (T(YI),T(Y)... } and

their identical distributions, it follows for all procedures in 1 and 2

that their run lengths are geometric with parameter equal to the probability

of exceeding a control limit on any particular occasion. Because the T2

test is optimal among a-level tests in TI and -c the probability of ex-

ceeding the respective control limit at a fixed p 0 ji is at least as large

2for T as for any other procedure in T or T2 . The proof is completed on

recalling that the family {G(t;B); 6 z (0,1)} of geometric distributions

decreases stochastically in $, thus assuring that the run length of the T

chart is stochastically minimal.

We turn next to modifications of the standard charts which might be

made in response to the practical difficulties of implementing those pro-

cedures.

4. Modified Charts. Both the standard X2 and T2 charts require that

the control value U0 be known, and in addition the X2 chart requires the

value of 7. Often these parameters are unknown. In the one-dimensional

case it is common practice to estimate such parameters in a base period

when the process is in control, and to use these estimates in lieu of the

unknown parameters. Carried over to the multidimensional case, this approach
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yields modifications to the standard charts as follows. Let YO YOY2

..' I : consist of sample observations in a base period of length

m yielding oneor both the estimates, Y0for and So for Z. When Z is

unknown it is assumed that m > p to ensure the invertibility of S 0 * The

modifications of the standard charts to be considered here are set forth in

Table 1, where the listed statistics are appropriate versions of (1.1) and

(1.2) together with updated versions of their control limits. The latter

are chosen to assure that the modified charts will continue to monitor at

level a on each sampling occasion.

Note that the Type 2 and Type 3 modifications may be considered as

2 2substitutes for both X and T in (1.1) and (1.2). Practical advantages of

the Type 2 chart over the standard T 2chart are (i) only one matrix inver-

sion is needed using the Type 2 modification, and (ii) sample sizes after

the base period need not exceed p. This of course assumes stationarity of

the process dispersion parameters, which may be checked periodically using

the procedures of Hotelling (1947) or of Montgomery and Wadsworth (1972).

Run-length distributions of these modified charts generally are in-

tractable; they are not geometric owing to dependencies among the success-

ive statistics charted. However, the main result of this section is that

all these distributions may be bounded below in terms of standard geometric

distributions. That the modified charts eventually do signal is shown in

the proof of the theorem.

THEOREM 2. Denote the typical modified statistic of Table I by T(Yi)Y)

and its upper control limit by c a; suppose (Y1, 2 ... are observations

from a stationary process; and let N be the run length of the modified

chart. Then for every positive integer t,
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P(N>t) > I -G(t;s)

where 8 is the marginal probability 8 = P[T(Yi,Y0) > c.

Proof. Let M be geometric with distribution G(t;8); fix t; and for this

value note that P(M>t) = (1-8) Similarly express P(N>t) in terms of the

finite-dimensional distribution of fT(YI,YO),...,T(Yt,YO)}, and apply Lemma

1 to infer that

P(N>t) = P[T(Y,Y O I c ,. . . ,T(Yt,YO)<c a
t (4.1)

> i IP(T(YiY 0)<cI = (i-) t = P(M>t).

The proof using these finite-dimensional results will be complete if it can

be shown that the modified charts eventually signal with unit probability.

To see this, use the expression given for P(N>t) and the conditional inde-

pendence of {T(YI,),...,T(Y 'Yo)I given Y to write

P(N>t) - /F fP[T(YYo)<c IY0 }tdF(Y0 ) (4.2)
pxm

where F(.) is the cdf of Y and Y has the same distribution as Y. for i-.0 -3.

1,2,...,t. Clearly the function

H(t,Y0 ) = {P[T(YY )<cIY0 I1t (4.3)

satisfies H(t,Y0 ) < 1 and H(t,Y0) 0 as t + for each fixed Y 0 Moreover,

Fpxm dF(Y0) 1 1. From the dominated convergence theorem it follows that

Jim P(N>t) = f im H(t,Y0 )dF(Y0 ) - 0. (4.4)

pxm

This shows that the modified charts eventually signal with unit probability

and thus that the proof holds for every t > 0.
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We note that Theorem 2 holds under weakened assumptions. The role of

Gaussian assumptions in that theorem is to supply the control limit c ; the

theorem holds otherwise as long as {Y0 ,Y1 ,Y2,. ..} are mutually independent

and {T(Y 1 ,Y0 ),T(Y 2 ,Yo),...} are identically distributed. In particular, sta-

tionarity is not required for the Type 4 modification as long as the non-

centrality parameters {Xi = [nm/(n+m)]( i-O)'Z, (h1 -Th); i = 1,2,...} are

held constant.

5. Drifting Processes. Thus far we have supposed that the monitored

process is stationary beyond a base period, whether or not it is in control.

Combined with independence, stationarity leads to charts whose run lengths

are geometric. This section develops properties of the X2 and T2 charts in

monitoring the means of nonstationary multidimensional processes which we

call drifting processes. The run lengths for drifting processes are not

geometric even under independence because the successive statistics are not

distributed identically. Such distributions are complicated further by their

dependence on a countable sequence of parameters. Fortunately, intractable

distributions of this type can be bounded by simpler distributions under

suitable conditions on the sequence of parameters.

Let 6 = 192 .. ) be a sequence of parameters for a drifting process;

let F(t;S) be the distribution of run lengths for the corresponding chart;

and let D be the set of all bounded sequences. Two sequences 6 and 5* in

D are said to be ordered as & <5 * whenever i < 6* for all i. Under this
i

partial ordering an element 6 E D is said to be minimal for D a V, and-Mn 0 0

-M E D. to be maximal for D0, if 6 < ~ < M for every ~ . D The family
0' 5 <65 ore

{F(t;6); 6 v D) of distributions is said to be stochastically decreasing

in 6 if, for any 6 and 3* in D, the ordering 6 < 5* implies the stochastic
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ordering F(t;§*) > F(t;6) for every t. For drifting processes this prop-

erty captures the notion that a chart will signal more quickly as the pro-

cess drifts further from control.

An important property of a stochastically decreasing family of run-

length distributions is that an envelope of curves can be constructed for

certain members of the family in terms of simpler distributions. Given a

bounded sequence 6 = (61$62 ... ), let &m = inf(6 1 ,62,...) and SM W sup(3 1 9

62 ,...), and define a(m) = (6m ,'6m'...) and 6(M) = ( 6 Mm...). A basic

result is the following.

LEMMA 3. Suppose the family {F(t;5); E D } of run-length distributions is

stochastically decreasing in 6. Then for any 6 E D, the inequalities

F(t;S(M)) > F(t;6) > F(t;6(m))

hold for every t > 0. Moreover, these bounds hold for every F(t;§*) such

that 6(m) < 6* < 6(M).

Proof. The first conclusion is a consequence of the transparent ordering

6(m) < 6 < 6(M) and the fact that the family {F(t;6); 6 E D) is stochasti-

cally decreasing in 6. The second conclusion follows on repeating these

arguments for any 6* in 6(m) < S* < 6(M).

It may be noted that F(t;§) depends on the path 6 = (61,62,...) of

the drifting process, whereas the upper and lower bounds do not. This

fact simplifies a study of the bounding distributions, which are geometric

in some important cases.

Lemma 3 supports bounds on distributions of run lengths for the stan-

dard X2 and T2 charts and their modifications under drifting. What is

needed in each case is to identify the appropriate parameter sequence 6
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and to show that (F(t;6); 6 e D} is stochastically decreasing in 6.

To fix ideas, first consider the X2 chart with run length N under a

drifting process with parameters {(4141), ( 2,2) It follows that

t 2
P(N>t) -iiP(Xi<c ) (5.1)

where L(Xi) = X2(p,6i), the noncentral chi-squared distribution with p

degrees of freedom and the noncentrality parameter 6. - n( i-i0)'z1 (Ul(i0)1. -i i-0O

The parameter sequence for F(t;6) accordingly is 6 = (619,52,...), and be-

2
cause P(X.<c is a decreasing function of 6., it follows that (i) the

family {F(t;6); 5 £ D} is stochastically decreasing in 6, and (ii) F(t;

S(m)) = G(t; a(m)) and F(t; 6(M)) = G(t; a(M)), where a(m) and a(M) are the

probabilities of exceeding the control limits on those occasions for which

6i = 6 and S. = SM' respectively. Similar developments apply to the stan-

dard T2 chart using the monotonicity of the noncentral T2 distribution in

its noncentrality parameter 6i9 leading to the following.

THEOREM 3. Let F(t;S) with 6 e D be the run-length distribution of either
th sanar 2 T2

the standard X or T chart under a drifting process with parameter sequence

{ i=nCi-10)'zi( i-1O); i - 1,2.... }. Then the stochastic bounds

G(t;a(M)) > F(t;6) > G(t;c(m))

apply for every f > 0, where a(m) and a(M) are probabilites of exceeding

the control limits when 6 = 6 m = inf(61,2...) and = 6M 
= sup(6l,6 2 ,

...), respectively.

Further conclusions are evident. Because 0 = (0,0,...) e D and is

minimal for D, it follows that the geometric distribution G(t;) arising
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when the process is in control stochastically dominates the run-length

distribution for any drifting Gaussian process. Because the former signals

with unit probability, it follows that the standard X2 and T2 charts even-

tually signal under drifting. The behavior of the standard charts may be

compared under two drifting processes in terms of 5i = n(i -. 0)' 1(.q-v0 ) "

-i ~. i-1
When Zi = Z for all i, the inequality 6 1 = n* - )E 1-U0) asserts

that ji is more distant from p0 than V in a non-Euclidean metric. The
1 1

stochastic ordering F(t;§) > F(t;§*) assures that the chart tends to signal

more quickly as the process drifts further from control. Even if a process

is stationary in its means, i.e. pi = U for all i, the charts benefit from

successively tightened dispersion parameters through refinement of the pro-

cess. Specifically, let {Z1,Z2,...} and .be the dispersion

matrices of two processes such that Z* - E is positive semidefinite for all

i-i. It follOws that i , i.e.

n(p-u0) i(P-PO > n(4-p0'[ I(-11,(52

hence that F(t;§) > F(t;§*) for every t > 0, and thus that the chart for the

former process signals more frequently than the latter at a fixed U i #0*

Corresponding results hold for modified charts as developed in Section

4. If N is the run length of a modified chart we have, in the notation of

Section 4,

P(N>t) - P(T(YI,Y 0)<c .... ,T(YtY 0) <ca )

t (5.3)

- fF i IPfT(Yi'Y0)<c. Y0 dF(Y0 )p xm

for every positive integer t. For modified charts of Type 1 and Type 4 the

family (F(t;d); a s D} of run-length distributions is stochastically
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decreasing in 6, conditionally using properties of X2 and T2 charts as in

developments leading to Theorem 3, and unconditionally because the in-

equality holds point-wise at each fixed Y0 * For Type 2 and Type 3 modifi-

cations the needed ordering is supplied in the following lemma under the

assumption that the process dispersion parameters are stationary. Recall

that these procedures otherwise would not be used.

LEMMA 4. Suppose the process dispersion parameters are stationary. Then

the family (F(t;6); 6 e D} of run-length distributions is stochastically

2decreasing in S for both the modified T charts of Type 2 and Type 3.

Proof. For Type 3 charts temporarily fix Y and note that these essentially

are of Type 2 conditionally. For Type 2 charts we have

P(N>t) = P(T(Y ,Yo)<C ,... ,T(YtY 0)<co) (5.4)

where T(YIY 0 ), as defined in Table 1, may be rewritten as

TY (i'YO) = n(Y--O) ' -t (Y _O) / w, (5.5)

with

)IS_ (Y" 0 (.5.6)

for i - 1,2,...,t . A standard result is that L(w) = X 2(m-p+l) indepen-

dently of Yi" Write w - (WlW2, .... t ) and let G(w) be their joint cdf.

2 2Now recalling the definition of Xi, writing (5.5) as T(Yi,0O Xi/wi, and

noting that {T(Yj,Y0),...,T(Yt,YO)} are conditionally independent given

w, we evaluate (5.4) as

te(N>t) =fRt i I P(Xi.wlcjy )dG(y) (5.7)
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t Rt 2eas
where R+ isthe positive orthant of R . Because Xi conditionally has a non-

central chi-squared distribution with noncentrality parameter 6i = n(i i-O)
-1 2

-1 (1-i ), the conditional probability P(Xi<wic w!) decreases as 6 in-

creases, point-wise for each fixed wi, i = 1,2,...,t. For Type 2 charts

the desired property holds unconditionally on taking expectations using

(5.7). For Type 3 charts these conditional results hold point-wise for each

fixed Y 0 and thus unconditionally using a standard argument.

The foregoing results now may be combined with Lemma 3 to give the

following.

THEOREM 4. Let F(t;5) with 6 E D be the run-length distribution of a modi-

fied chart under a drifting process with parameters

i) {6i = n(wi-10)' (ui-w0); i 1,2,...} for Type I and Type 4

charts, and

(ii) (6i = ni-0) i = 1,2,...} for Type 2 and Type 3

charts. Then the bounds

F(t;S(M)) > F(t;S) > F(t;6(m))

hold for every positive integer t, where S(m) = (6m,6m,...) and §(M) =

(,SM, ... ) with 6m = inf(6l, 2 ,...
) and S. = sup(Sl'62'''')"

It is of interest that F(t;§(m)) and F(t;§(M)) are precisely distribu-

tions of the types considered in Section 4. Theorem 2 accordingly yields

the bounds

F(t;6(m)) < G(t;a(m)) and F(t;§(M)) < G(t;a(M))

where a(m) and a(M) are the probabilities of exceeding the upper control
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limit on those occasions for which 6, = 6 mand 6.j 5Vrspciey

It was noted earlier that envelopes for the run-length distributions

of certain drifting processes may be constructed using geometric distribu-

tions. To illustrate, envelopes are given in Figure 1 for the standardX2

and T2charts, each monitoring at level a = 0.05 with p - 2 and n = 6. The

case 6 = 0 applies when the monitored process is in control. For each type

of chart the curves labeled 6 = 3.0 and 6 =6.75 represent stationary pro-

cesses having the parameter sequences 6 = (3.0,3.0,....) and 6 2 = (6.75,

6.75,...), respectively. These curves comprise an envelope containing the

distributions of run lengths for all drifting processes satisfying

3.0 < 6 << 6 M< 6.75

using X 2or T 2charts as appropriate. Entries in Figure 1 were found on

converting X 2and T 2into F-statistics and using P.C. Tang's tables as

given in Graybill (1961) to determine the probability a of surpassing the

a-level control limit on any particular occasion. Values of G(t;B) then

were computed directly for various values of t and were graphed.

It is informative to compare curves for the X 2and T 2charts at a

2fixed ui Then the run length of the X chart is stochastically small-

2er than that of the T chart. This property may be observed in Figure 1

for the cases treated there, and it can be shown analytically for any

choice of p, n, and U 0 u 0 The greater efficiency of using X 2when appro-

priate on axiy monitoring occasion thus translates into a greater propensity

to signal that vi in comparison with the T 2chart.

The optimality of the standard T 2chart among procedures in T1and T 2

was established in Section 3 for stationary processes not in control. This
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optimality carries over to drifting processes as well.

THEOREM 5. Consider a p-dimensional Gaussian process with drifting para-

meters f(i, i) , (12,2 ) .... I on successive sampling occasions, to be

monitored for means. Of all invariant procedures monitoring at level a in

the class Tl, and of all a-level monitoring procedures in the class T2P the

2ru, length of the T chart is stochastically smallest.

Proof. Let (T(YI), T(Y2) .... I be the statistics and c the control limit

of any procedure in T or r2 and let N be its run length. Because

t

P(N>t) = iiP(T(Yi)<ca),

it is clear that (i) the run-length distribution F(t;a) of the chart de-

pends on the parameters a = ($1132,'.) with {i = P(T(Yi)>c a); i = 1,2,

...}, and the family (F(t;s); a E 01 decreases stochastically in . Let

be the sequence of parameters for any procedure in T or T and let 8*

2be the corresponding sequence for the T chart. Because on each sampling

occasion T2 is optimal among procedures in T and T2 , it follows that

< .* The conclusion of the theorem now follows from the stochastically

decreasing character of {F(t;@); D I P}.

6. Monitoring Spherical Processes. Many findings of the foregoing

sections carry over to observations generated from a spherical process
{J(t); t s NI as in Section 2. Consider the standard X and T2 charts

using outcomes {Y ij(t)} of the vector-valued process defined in (2.3)

having the location parameters w(t) and the dispersion parameters Z(t).

For convenience we drop the arguments and index these parameters as

Ei) for the ith monitoring period. The principal properties of these
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charts under stationary and drifting processes induced from a spherical

process are the following.

THEOREM 6. Let c (X) and c (T) be a-level control limits for the X2 and
a

T2 charts for use with observations generated from a spherical process.

Let NX and NT be the run lengths of chese charts having the distributions

FX(t;6) and FT(t;6) with parameters (Si n(-0)- - i 1,2....

Then

(i) c (T) = T (p,n-1);
a a

(ii) P(NT<t) = G(t;) when ,i(t) = u0 for all t;

(iii) P(Nx>t) > I - G(t;8) when the process is stationary, where

= P(X 2>c X)); and
a

(iv) the families Fx(t;s); 6 e DI and (FT(t;S); 6 c D} are stochasti-

cally decreasing in 5 = (Sis2,.).

Proof. (i) Starting with Y., [Yill i2l ...Y Yin] , make the location-scale

changes Zi = [il'i2'" Zn] with Z .-(Y _-u0) and note that_il i -'in -ij i -2 'j

T2 I ( S1n -1- (6-1

-i
where Z i and W i respectively are the sample mean vector and the sample dis-

persion matrix computed from Zi" Moreover, L(Zi) is spherical on F .

Thus choosing M as (0} c F and noting that (Zi) - n7ZwZ is homogen-~ pxn i- i
2

ous of degree zero in its argument, we apply Lemma 2 with (Zi) - Ti to
-i

infer that L(T ) - T 2(p,n-1) for any underlying spherical process when
i2

;jt) - for all t. The conclusion c (T) - T (p,n-1) follows immediately.

(ii) For each fixed t write

P(NT>t) - P(T2<c (T),....,T<c (T)); (6.2)
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)tt
define Z - [Z1 ,Z2 .... ,'t] (Fp) in terms of the standardized variables

introduced in the proof of (i); and note that L(Z) is spherical on (F pxn

Accordingly take M as {0} c (F ) t; observe that O(Z) - (nZ'W , ..Zpxn - -11 -1'**

n-- w1 Z ) is homogeneous of degree zero in its argument; and apply Lemma 2.t-t _t

2 2 2 2
once more with p(Z) = (TI,. .T) to conclude that L(T I.T T ) is iden-

tical to its normal-theory form when p(t) = p0" Conclusion (ii) now follows

directly from (6.1) and (6.2) and results known for the Gaussian case.

(iii) From the representation (2.1) for the underlying spherical pro-

cess, P(N >t) may be written asX

2 2P (Nx> t) P P(Xli.C (x ) , . . . c

a 0 i i( ca (X)lr)dH(r) (6.3)

2 22 ,X } are conditionally independent given r. Under the hypo-

thesis of stationarity (6.3) becomes

P(Nx> t) = f[P(X2<c (X)I r)]tdH(r) (6.4)

where X2 has the typical distribution of {X,2.,X2}. Conclusion (iii) now

follows from the arguments leading to Lemma 1.

(iv) Consider (Fx(t;§); D I V}. From (6.3) it is clear that the con-

ditional distribution L(r-2 XIr) is x (PSi(r)) with the noncentrality

parameter

-1 2(r) -1 (i 0' 11i- O0)/r. (6.5)

That the conditional run-length distributions (F x(t;1r); eS D} are sto-

chastically decreasing in 5 follows as in the proof of Theorem 3 point-wise

for each fixed r. The property holds unconditionally on applying a
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standard argument. The case of F T(t;S); 6 E: D! is treated similarly.

Conclusion Mi assures that the standard T 2chart with the normal-

theory control limit c ais appropriate for monitoring any spherical pro-

cess after location and scale changes, at level a. However, the value c aCX)

required for monitoring at level a using the X 2chart generally depends on

the underlying spherical process. Conclusion (ii) of Theorem 6 establishes

the familiar normal-theory run-length distribution of the T 2chart for any

spherical process when the process is in control.

Results for modified charts given in Sections 4 and 5 under Gaussian

assumptions carry over to spherical processes. Proofs for these extensions

follow the pattern of proof for conclusions (iii) and (iv) of Theorem 6.

In view of the representation (2.1), conditional properties already have

been established in the earlier sections point-wise for each r; uncondition-

al properties then yield to a standard argument. Further details are omit-

ted in the interest of brevity.

Our final results deal with the relative performance of a given chart

under alternative spherical processes. By a given chart is meant either

the X 2or T 2chart with a fixed value for its control limit. Let i(-) and

v(-) be finite-dimensional measures characterizing two zero-mean stochastic

processes. If for every N, u(C) is more peaked about 0 c Rthan v(-) in

the sense of Sherman (1955)v then the p-process is said to be more peaked

about the zero function than the v-process. In the case of spherical pro-

cesses having the representation (2.1), it can be shown that of two such

processes having the mixing distributions H Cr) and H C r), the W-process

is more peaked about zero than the v-process if and only if H UCr) > H C r)

for each r > 0. Our principal result is the following.
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THEOREM 7. Let F (t;S) and F (t;8) be the run-length distributions of a

chart under drifting processes having the same parameters

6 = n(pi-io) (li-Th); i =,

and generated from spherical processes having the measures ;1(.) and v(-),

respectively. If the 4-process is more peaked about zero than the v-process,

then

(i) F (t;O) > F (t;O) for the X2 chart when the processes are in con-

trol; and

(ii) F (t;3) > F (t;5) for the T2 chart.

Proof. (i) Let c(X) be the control limit for the X2 chart, and let

= {Z.iF IX=nZiZi<c(X)} (6.6)3. pxn i --

in the notation used in the proof of Theorem 6. On letting A = A IA2 n.. .nAt

we infer from the first expression on the right of (6.3) that

[P(N >t)-P(N >t)] [ i(A)-v(A)]. (6.7)

But A is a convex subset of (Fpxn)t symmetric about 0 under reflection.

Under the hypothesis that p(') is more peaked about 0 than v('), it follows

that [p(A)-(A)] > 0, which is equivalent to conclusion (i).

(ii) Consider the standard T2 chart with control limit c . Let N be

a typical run length and let N and N be the run lengths of the chart

under the two processes. For any underlying spherical process note as in

(6.3) that

P(N>t) 2 2.... 2<c

t (6.8)
t ~0jP(T 2c. r)dH(r)(68M f'=0 i:
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2 2 2where {T,T 2, . T } are conditionally independent given r, and the con-

ditional distribution L(T lr) is a noncentral Hotelling's (1931) distri-

bution depending on r only through the noncentrality parameter Si(r) given

by (6.5). Define

t 2
G(t;S(r)) = iPie(T 2 c'ir) (6.9)

with d(r) = (61, 2P,...,t )/r2 . Applying the relation (6.8) twice and using

(6.9), we evaluate the difference D(t) = [P(N >t)-P(N >t)] as

D(t) = fOg(t;S(r))dH,(r) - 0G(t;d(r)dH (r). (6.10)

Under the hypothesis that H () dominates H (.) stochastically, there are

increasing functions (v) and n(v) with (v) < n(v) and a random variable

V with distribution H(-) such that L(9(V)) = H (.) and L(n(V)) = H (.);

cf. Lehmann (1959), page 73. It follows that

D(t) = f[G(t;S(n(v))) - G(t;S(E(v)))]dH(v). (6.11)

But G(t;6(r)) is an increasing function of r; because n(v) > (v) for each

v, it follows that the integrand on the right of (6.11) is point-wise non-

negative and thus the integral is nonnegative. This gives P(N >t) > P(N >t),

which is equivalent to conclusion (ii) of the theorem.

It was noted earlier that the control limit c (X) for monitoring at

level a using the X2 chart generally depends on the underlying spherical

process. Suppose the control limit c*(X) is chosen for some reference dis-

tribution such as the Gaussian distribution. Provided the processes are

in control, the run-length for the reference distribution as a bound
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stochastically dominates the run lengths for all spherical processes less

peaked than the reference, and is dominated stochastically by the run lengths

for all spherical processes more peaked than the reference distribution.

These results are consequences of conclusion (i) of Theorem 7. Conclusion

2(ii) of that theorem assures that the T chart will tend to signal more

frequently under drifting, the more peaked the measure of the underlying

process.
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TABLE 1. Statistics and their control limits in modified X2 and T2 chartsfor monitoring the means of a multidimensional production process.

Modification Statistic Control
Type Limit

1 [nm/(n+m) I _Yi-Y 0' )1Z(Y i-Yo )xt (p)' ° i--"o>' o' < --o <,-
2 n(Y i ) 'S Y- T2 (p,m-1)

[ i- o)0 s 2i-O (

3 nm/ (n+m)]( (y 11 y- T 2 (P,m-I)

4 [nm/(nii)J(Y y )' (Y, -0 2 pn1
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FIGURE 1. Geometric distributions of run lenghts for the X and T 2charts

mronitoring at level a =0.05 for the cases p-2 , n 6 , with 6w3.0 and 6-6.75.
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20. (continued)

--the distributions of run lengths of these charts are studied when (i) certain

parameters are estimated in a base period and modified procedures are followed

using these estimates, (ii) the process is a drifting process, and (iii) the

assumption of independent Gaussian vector observations is replaced by the

assumption that the observations are generated from a spherical process. For

these cases stochastic bounds on the actual run-length distributions are given

in terms of geometric distributions, and certain monotone properties of run

lengths are established under drifting.
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